The original Monty Hall problem named after a game played on an old television game show "Let's Make a Deal" with host Monty Hall. Rosenhouse describes the problem as:

You are shown three identical doors. Behind one of them is a car. The other two conceal goats. You are asked to choose, but not open one of the doors. After doing so, Monty, who knows where the car is, opens one of the two remaining doors. He always opens a door he knows to be incorrect, and randomly chooses which door to open when he has a more than one option (which happens on those occasions where your initial choice conceals the car). After opening an incorrect door, Monty gives you the option of either switching to the other unopened door or sticking with your original choice. You then receive whatever is behind the door you choose. What should you do?

(Presumably you are attempting to maximize your chance of winning one's chance of getting a car). Most people conclude that there's no benefit from switching. The general logic against switching is that after the elimination of a door there are two doors remaining, so each should now have a 1/2 chance of containing the door.

This logic is incorrect. One door has a 2/3rds chance of getting the car if one's general strategy is switching. Many people find this claim extremely counterintuitive. To see quickly the correctness of this claim, note that if one chooses a strategy of to always switching, then one will switch to the correct car-containing door exactly when your original door was not the car door. This will occur 2/3rd of the time.

Many people have great difficulty accepting the correct solution to the Monty Hall problem. This includes not just laypeople, but also professional mathematicians, including most famously Paul Erdos who initially did not accept the answer. The problem, and variants thereof, not only raise interesting questions of probability but also give insight into how humans think about probability.

Rosenhouse's book is very well done. He looks not just at the math, but also the history of the problem, and philosophical and psychological implications of the problem. For example, he discusses studies which show that cross-culturally the vast majority of people when given the problem will not switch. I was unaware until I read this book how much cross-disciplinary work there had been surrounding the Monty Hall problem. Not all of this work has been that impressive, and Rosenhouse correctly points out where much of the philosophical argumentation over the problem simply breaks downs. Along the way, Rosenhouse explains such important concepts as Bayes' Theorem (where he uses the simple discrete case), the different approaches to what probabilities mean (classical, frequentist, and Bayesian) and their philosophical implications. The book could easily be used for supplementary reading for an undergraduate course in probability or reading for an interested highschool student.

By far the most interesting parts of the book were the chapters focusing on the psychological aspects of the problem. Systematic investigation of the common failure of people to correctly analyze the Monty Hall problem has lead to much insight about how humans reason about probability. This analysis strongly suggests that humans use a variety of heuristics which generally work well for many circumstances humans run into but break down in extreme cases. In a short blog post I can’t do justice to the clever, sophisticated experimental set-ups used to test the nature and extent of these heuristics, so I'll simply recommend that people read the book.

For my own part, I'd like to use this as an opportunity to propose two continuous versions of the Monty Hall problem that to my knowledge have not been previously discussed. Consider a circle of circumference 1. A point is randomly picked as the target point on circle (and not revealed to you). You then pick a random interval of length 1/3rd on the circle. Monty knows where the target point is. If you picked an interval that contains the target point, Monty picks a random 1/3rd interval that doesn't overlap your interval and reveals that interval as not containing the target point. If your interval does not contain the target point, Monty instead picks uniformly a 1/3rd interval that doesn't include the target point and doesn't overlap with your interval. At the end of this process, you have with probability one, three possible intervals that might contain the target point, your original interval, or the intervals on either side of Monty's revealed interval. You are given the option to switch to one of these new intervals. Should you switch and if so to which interval?

I'm pretty sure that the answer in this modified form is also to switch, in this case switching to the larger of the two new intervals.

However, the situation becomes a bit trickier if we modify it a bit. Consider the following situation that is identical to the above, but instead of Monty cutting out an interval of length 1/3rd, he picks k intervals of each length 1/(3k) (thus the initial case above is k=1). Monty picks where to place these intervals by each picking one of the valid intervals uniformly and then going on to the other, then revealing the locations of all his intervals at the end. The remaining choices for an interval for you to pick are your original interval or any of the smaller intervals created in between Monty's choices. You get an option to stay or to switch to one of these intervals. It seems clear that even for k=2, sometiimes you should switch and sometimes you should not switch, depending on the locations of Monty's intervals. However, it isn't clear to me when to stay and when to switch. Thoughts are welcome.